JRFM, Free Full-Text

Por um escritor misterioso
Last updated 03 novembro 2024
JRFM, Free Full-Text
This paper examined a set of over two thousand crypto-coins observed between 2015 and 2020 to estimate their credit risk by computing their probability of death. We employed different definitions of dead coins, ranging from academic literature to professional practice; alternative forecasting models, ranging from credit scoring models to machine learning and time-series-based models; and different forecasting horizons. We found that the choice of the coin-death definition affected the set of the best forecasting models to compute the probability of death. However, this choice was not critical, and the best models turned out to be the same in most cases. In general, we found that the cauchit and the zero-price-probability (ZPP) based on the random walk or the Markov Switching-GARCH(1,1) were the best models for newly established coins, whereas credit-scoring models and machine-learning methods using lagged trading volumes and online searches were better choices for older coins. These results also held after a set of robustness checks that considered different time samples and the coins’ market capitalization.
JRFM, Free Full-Text
PDF) What Factors Affect Income Inequality and Economic Growth in
JRFM, Free Full-Text
GitHub - fast-reflexes/better-react-mathjax
JRFM, Free Full-Text
SOLUTION: Human eye and the colourful world class 10 notes 1
JRFM, Free Full-Text
JRFM, Free Full-Text
JRFM, Free Full-Text
Sotah: Pizzastock Battle of the Bands 2024 - Evvnt Events
JRFM, Free Full-Text
Journal for Religion, Film and Media (JRFM)
JRFM, Free Full-Text
SOLUTION: Human eye and the colourful world class 10 notes 1
JRFM, Free Full-Text
JRFM, Free Full-Text
JRFM, Free Full-Text
Finding freedom : writings from death row : Masters, Jarvis Jay

© 2014-2024 renovateindia.wappzo.com. All rights reserved.